

计算机组成原理 课程介绍与背景知识 王超

中国科学技术大学计算机学院 高能效智能计算实验室 2021年春

本章提纲

口课程介绍与基本要求

- ✓介绍
- ✓计算机软硬件概念
- ✓课程体系与课程要求
- ✓UC伯克利的相关课程
- 口课外知识:编码基础
- 口课外知识:智能计算系统

个人介绍

□王超

2002-至今 中国科大计算机系、UCSB访问学者(2015-2016)研究方向:智能处理器与智能计算系统

CCF体系结构专委会委员、CCF形式化方法专委会委员,中国科学院青年创新促进会会员、IEEE高级会员,ACM高级会员、CCF高级会员。ACM TODAES、ACM/IEEE TCBB、IET CDT等期刊编委。主持或参与国家自然科学基金、国家重点研发计划、科技委重点课题等多项国家和省部级科研项目。在TPDS、TC、TCAD、TSC、TVLSI、TCBB、TACO、MICRO、RTSS、SPAA、DATE、FPGA等高水平学术期刊和会议上发表论文100余篇,撰写英文学术专著两部(Taylor & Francis出版),曾获ACM中国新星奖提名(全国共四名),DATE 2015最佳IP提名,CODES+ISSS 2018最佳论文提名,王宽诚育才奖、腾讯犀牛鸟基金优秀奖。

Mail: cswang@ustc.edu.cn

主页: http://staff.ustc.edu.cn/~cswang

助教团队介绍

蔡豪语 caihaoyu@mail

高迎雪 gyingxue@mail

周恩帅 zes18119713525@mail

王晶 wj980828@mail

高海涵 kd193104@mail

黄致远 hzy_ustc@mail

联系方式

口课程主页:

2021: https://enszhou.github.io/cod/

BB系统

QQ群: 486313994

口上课时间地点

1~15W 3C103:周一 (6,7)

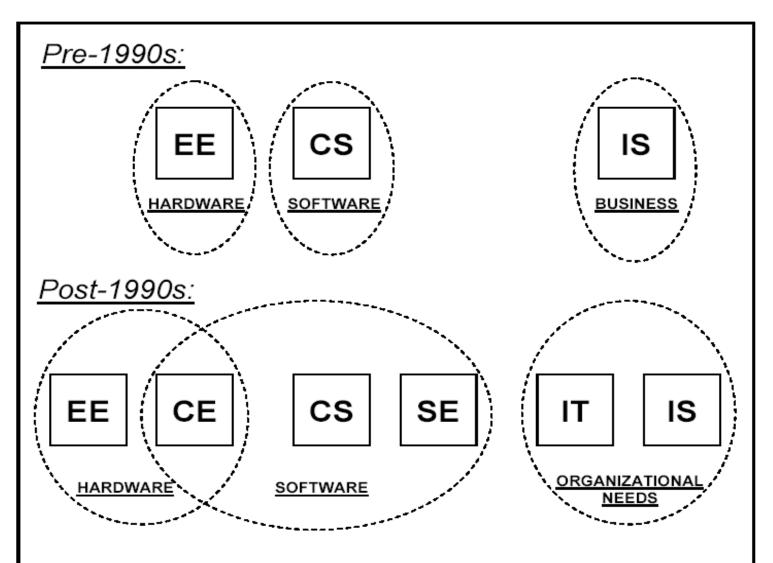
1~15W 3C103:周三 (6,7)

口实验: 张俊霞老师, 时间地点待定

【组成原理实验通知】

- 1. 实验时间:第4周至第14周,每周提供两个时间段(周二和周四晚上18:30~21:30),同学可任选一个时间段;
- 2. 实验QQ群: 2021组成原理实验 (1039193953);
- 3. 选课提醒:对于没有Verilog HDL和EDA设计基础的同学,要顺利完成实验并通过理论课程是有一定困难的,因此选择组成原理课程需要谨慎!
- 4. 本学期除开设普通实验班外,拟选拔一部分优秀同学进入面向FPGA设计的竞赛班,有意参加的同学尽快与张老师联系(QQ: 2763382562, 手机: 13866102077)。

计算机的基本概念



- □ A computer is a device that can be instructed to carry out arbitrary sequences of arithmetic or logical operations automatically. The ability of computers to follow generalized sets of operations, called programs, enables them to perform an extremely wide range of tasks.
- 口 计算机 (computer) 俗称电脑,是现代一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。
- 口 两个基本特征
- 1. 运行程序
- 2. 计算机由硬件+软件组成

计算机软件-硬件

系统实验室

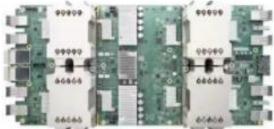
软件+硬件

- □考虑、分析、解决一个实际问题
- □例如:人脸识别、语音合成、图像采集、视频 处理、文本分析、高性能计算等等

例:

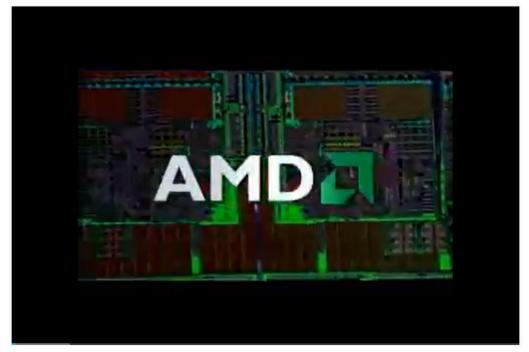
- 1. 如何在城市中部署摄像头?
- 2. 如何实现超级智能计算机?
- 3. 如何实现一个无人驾驶系统?

.....


硬件+软件

□硬件

硬件-以计算机芯片为基础


□AMD CPU的制作过程

主站∨ 番剧 游戏中心 直播 会员购 漫画 赛事 □ 下载APP 用亿点时间把米饭打成年糕

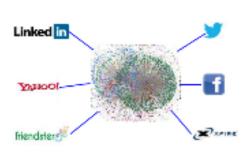
AMD CPU製作過程【中文】

数码 > 电脑装机 2017-09-10 21:22:27

3.3万播放 - 199弹幕

硬件+软件

口系统软件+应用软件



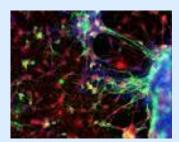


应用软件-人工智能为例

超级计算机

数据中心

智能手机


嵌入式设备

神经网络 机器学习



药物研制

自动翻译

图像分析

Source: Yuji Chen (ICT)

为什么要学习计算机组成原理

- 1. 计算机专业人员的核心专业课程之一
- 2. 相关行业我国与国际领先水平**差距较大**

60年校庆

□ 习近平总书记曾三次考察我校, 多次对学校的工作给予了充分 肯定,指出:中国科学技术大学是为"两弹一星"事业而创办 的一所大学。学校坚持红专并进、理实交融的校训,敢为人先 , 锐意进取, 培养了大批**德才兼备**的优秀人才, 取得了一系列 举世瞩目的科研成果,为党和国家事业发展作出了重要贡献; 殷切希望我们:全面贯彻党的教育方针,坚持社会主义办学方 向, 传承科教报国、追求卓越的精神, 瞄准世界科技前沿, 立 足国内重大需求,潜心立德树人,执着攻关创新,在基础性, 战略性工作上多下功夫,努力办出中国特色世界一流大学,为 培养德智体美劳全面发展的社会主义建设者和接班人,为建设 创新型国家、建设世界科技强国作出新的更大的贡献。

包信和校长在中国科大建校60周年纪念大会上的讲话

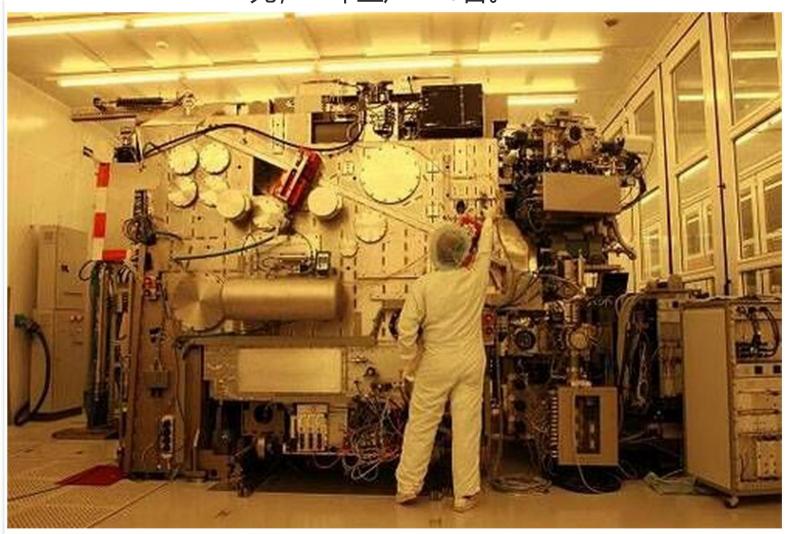
关键核心技术

口关键核心技术是要不来、买不来、讨不来的

中国科学院第十九次院士大会、中国工程院第十四次院士大会 2018年5月28日上午开幕,习近平出席会议并发表重要讲话

■ 我国发展到现在这个阶段,不仅从别人那里拿到 关键核心技术不可能,就是想拿到一般的高技术也 是很难的,西方发达国家有一种教会了徒弟、饿死 了师傅的心理,所以立足点要放在自主创新上

2015年3月5日在参加十二届全国人大三次会议


- 口【专题报道】亟待攻克的核心技术
- 口近年来,中国科技正带着澎湃动力向前奔跑,并逐渐进入到<mark>跟跑、并跑、领跑</mark>"三跑并存"的阶段。但我们在充满信心的同时,还应更加清醒和理性。与发达国家相比,我国不少领域关键核心技术受制于人,亟待集中力量奋力攻关。
- 口真正的核心技术靠化缘是要不来的。我们还有 多少亟待攻克的关键核心技术,差距在哪,需要 从哪些方面突破? 科技日报开辟"亟待攻克的核 心技术"专栏,就此进行梳理、解读和评析。

1、光刻机

- □《这些"细节"让中国难望顶级光刻机项背》 (4月19日)
- □ 制造芯片的光刻机,其精度决定了芯片性能的上限。在"十二五"科技成就展览上,中国生产的最好的光刻机,加工精度是90纳米。这相当于2004年上市的奔腾四CPU的水准。而国外已经做到了十几纳米。
- □ 光刻机里有两个同步运动的工件台,一个载底片,一个载胶片。两者需始终同步,误差在2纳米以下。两个工作台由静到动,加速度跟导弹发射差不多。在工作时,相当于两架大飞机从起飞到降落,始终齐头并进一架飞机上伸出一把刀,在另一架飞机的米粒上刻字,不能刻坏了。

荷兰的ASML公司生产的紫外光刻机(EUV),售价超过1亿欧元,一年生产<20台。

2、芯片

□《中兴的"芯"病,中国的心病》(4月20日)

系统	设备	核心集成电路	国产芯片占有率	国内厂商	
	服务器	MPU.	0%		
21 W 4+ 6 A)	个人电脑	MPU	0%	龙芯、兆芯、飞腾、中威等	
计算机系统	工业应用	мси	2%	中额电子、华润微电子、华大半导体、	
通用电子系统	可编程逻辑设备	FPGA/EPLD	0%	京擬雅格、高云 FPGA、同方国芯、 上海安路、西安智多晶等	
数5	数字信号处理设备	DSP	0%	中电十四所、龙芯	
通信设备	移动通信终端	ApplicationProcessor	18%	华为海思、展锐等	
		CommunicationProcessor	22%		
		EmbeddedMPU	0%	中天微、华为海思	
		EmbeddedDSP	0%	(0)	
	核心网络设备	NPU	15%	华为海思	
000000		DRAM 0% 合肥客力、1	合肥客力、长江存储、晋华集成		
内存设备	半等体存储器	NANDFLASH	0%	长江存储	
		NORFLASH	5%	北易创新	
显示及视频系统	With a collection of a collection	ImageProcessor	5%	华为海思、芯原微电子	
	高清电视/智能电视	DisplayDriver	0%	中颗电子兴频号/超影频	

低速的光芯片和电芯片已实现国产,但高速的仍全部依赖进口。国外最先进芯片量产精度为10纳米,我国只有28纳米,差距两代。据报道,在计算机系统、通用电子系统、通信设备、内存设备和显示及视频系统中的多个领域中,我国国产芯片占有率为0。

- 3、操作系统
- □《丧失先机,没有自研操作系统的大国之痛》 (4月23日)

- 5、触觉传感器
- □《传感器疏察,被愚钝的机器人"国产触觉"》(4月 25日)
- □ 触觉传感器是工业机器人核心部件。精确、稳定的严苛要求,拦住了我国大部分企业向触觉传感器迈进的步伐,目前国内传感器企业大多从事气体、温度等类型传感器的生产。在一个有着100多家企业的行业中,几乎没有传感器制造商进行触觉传感器的生产。日本阵列式传感器能在10厘米×10厘米大小的基质中分布100个敏感元件,售价10万元,而国内产品多为一点式,一般100元一个。

- 6、真空蒸镀机
- □《真空蒸镀机匮缺:高端显示屏上的阴影》(4 月26日)
- □ OLED面板制程的"心脏"。日本Canon Tokki独占高端市场,掌握着该产业的咽喉。业界对它的年产量预测通常在几台到十几台之间。有钱也买不到,说的就是它。 Canon Tokki能把有机发光材料蒸镀到基板上的误差控制在5微米内(1微米相当于头发直径的1%),没有其他公司的蒸镀机能达到这个精准度。目前我国还没有生产蒸镀机的企业,在这个领域我们没什么发言权。。

7、手机射频器件

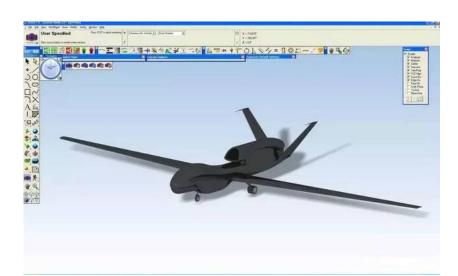
□射频器件: 仰给于人的手机尴尬》(5月7日)

□ 一块手机的主板上,1/3的空间是射频电路。手机发展趋势是更轻薄,功耗更小,频段更多,带宽更大,这就向射频芯片提出了挑战。射频芯片将数字信号转化成电磁波,4G手机要支持十几个频段,信息带宽几十兆。 2018年,射频芯片市场150亿美元;高端市场基本被Skyworks、Qorvo和 博通3家垄断,高通也占一席之地。射频器件的另一个关键元件——滤波器,国内外差距更大。手机使用的高端滤波器,几十亿美元的市场,完全归属Qorvo等国外射频器件巨头。中国是世界最大的手机生产国,但造不了高端的手机射频器件。这需要材料、工艺和设计经验的踏实积累

Registration of the state of th

15、核心算法

《算法不精,国产工业机器人有点"笨"》(5月22日)


- □ 中国已经连续5年成为世界第一大机器人应用市场,但高端机器人仍然依赖于进口。由于没有掌握核心算法,国产工业机器人稳定性、故障率、易用性等关键指标远不如工业机器人"四大家族"发那科(日本)、ABB(瑞士)、安川(日本)、库卡(德国)的产品。核心算法差距过大,导致国产机器人稳定性不佳,故障率居高不下。算法的差距不只体现在核心控制器上,更拖慢了伺服系统响应的速度。
- □ 机器人每完成一个动作,需要核心控制器、伺服驱动器和伺服电机协同作战。对于单台伺服系统,国产机器人动态与静态精度都很高,但高端机器人一般同时有6台以上伺服系统,用传统的控制方法难以取得好的控制效果。

20、航空设计软件

《航空软件困窘,国产飞机设计戴上"紧箍咒"》(5月30日)

□ 自上世纪80年代后,世界航空业就迈入数字化设计的新阶段,现在已经达到离开软件就无法设计的高度依赖程度。设计一架飞机至少需要十几种专业软件,全是欧美国家产品。国内设计单位不仅要投入巨资购买软件,而且头戴钢圈,一旦被念"紧箍咒",整个航空产业将陷入瘫痪。 据媒体报道,设计歼-10飞机时,主起落架主承力结构的整个金属部件是委托国外制造。但造完之后,起落架的收放出现问题,有5毫米的误差,只好重新订货制造。仅仅是这一点点的误差,影响了歼-10首飞推迟了八九个月。没有全数字化的软件支撑,任何一点细微的误差,都可能成为制造业的梦魇。。

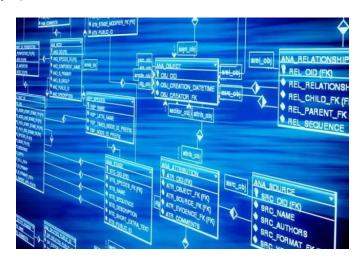
21、光刻胶

中国半导体产业因光刻胶失色(5月31日)

□ 我国虽然已成为世界半导体生产大国,但面板产业整体产业链仍较为落后。目前,LCD用光刻胶几乎全部依赖进口,核心技术至今被TOK、JSR、住友化学、信越化学等日本企业所垄断。就拿在国际上具有一定竞争实力的京东方来说,目前已建立17个面板显示生产基地,其中有16个已经投产。但京东方用于高端面板的光刻胶,仍然由国外企业提供。光刻胶主要成分有高分子树脂、色浆、单体、感光引发剂、溶剂以及添加剂,开发所涉及的技术难题众多,需从低聚物结构设计和筛选、合成工艺的确定和优化、活性单体的筛选和控制、色浆细度控制和稳定、产品配方设计和优化、产品生产工艺优化和稳定、最终使用条件匹配和宽容度调整等方面进行调整。因此,要自主研发生产,技术难度非常之高。

30、医学影像设备元器件

《拙钝的探测器模糊了医学影像》(6月25日)


□ 目前国产医学影像设备的大部分元器件依赖进口,至少要花10年、20年才能达到别人的现有水平。在传统医学成像(CT、磁共振等)上,中国最早的专利比美国平均晚20年。在专利数量上,美国是我国的10倍。这意味着整个产业已经完全掌握在国外企业的手里了,所有的知识产权,所有的原创成果,所有的科研积累都在国外,中国只占很少的一部分。

34、数据库管理系统

《数据库管理系统:中国还在寻找"正确打开方式"》(7月2日)

□ 目前全世界最流行的两种数据库管理系统是Oracle和MySQL,都是甲骨文公司旗下的产品。竞争者还有IBM公司以及微软公司的产品等。甲骨文、IBM、微软和Teradata几家美国公司,占了大部分市场份额。数据库管理系统国货也有市场份额,但只是个零头,其稳定性、性能都无法让市场信服,银行、电信、电力等要求极端稳妥的企业,不会考虑国货。

2. 中兴、华为等企业依赖

口美国制裁中兴通讯事件的影响及应对措施

CCTD赛迪智库

2016年4月11日 第13期 总第444期

美国制裁中兴通讯事件的影响及应对措施

【内容提要】 3月7日,美国将中兴通讯及三个关联公司列入制裁名单,对其采取限制出口措施。美国意在对中兴造成毁灭性打击,对中国政府和产业界形成战略威慑,以增加谈判筹码。透过中兴事件,赛迪智库集成电路研究所认为,中芯国际可能是下一个被美国制裁的对象。制裁中芯国际,美国可以达到扼杀中国集成电路产业的战略效果。从短期看,我国当务之急是尽快解决中兴被制裁问题;从长期看,则必须强化战略风险管理,可借鉴美国做法,加强对境内企业的安全合规审查和产品的安全评测,对美国的整体战略意图进行持续深入研判,以防患于未然。

嵌入式系统实验室 EMBEDDED SYSTEM LABORATORY SUZHOU INSTITUTE FOR ADVANCED STUDY OF USTC 2016年3月7日,美国商务部工业与安全局(BIS)以违反美国出口管制法规为由,将中兴通讯及三个关联公司列入制裁名单,对其采取限制出口措施。在限制期内,所有美国供应商向中兴出口的任何商品(包括设备和零部件),都必须提前向美国商务部申请许可。虽然3月20日美国暂时解除了对中兴的制裁,但其影响仍在发酵。此举对中兴是一个严重打击,同时对我国政府和产业界也有一个警示作用,我们必须深入分析,加强应对。

一、美国制裁将对中兴造成毁灭性打击

中兴通讯是全球第五大、中国第二大通信设备制造商,业务覆盖 无线网络、光传输、宽带接入、数据通信、核心网、云计算手机终端 等领域,但其主要业务领域对国外芯片依赖严重,具体情况如下:

无线网络产品。在基带芯片方面,中兴已实现 2G 和 3G 基带芯片和数字中频芯片的自主配套,但4G及以上基带主要基于Xilinx或者 Intel/Altera 的高速 FPGA 芯片;在射频芯片方面,主要来自Skyworks和 Qorvo等公司;在模拟芯片方面,包括 PLL 芯片、高速 ADC/DAC 芯片、电源管理芯片主要来自 TI 等公司。

光传输产品。光交换芯片方面,中兴已实现中低端波分和 SDH

芯片自主配套,但 10G/40G/100G 等中高端光交换和光复用芯片主要来自 Broadcom 等公司;光收发模块主要来自 Oclaro、Acacia 等公司。

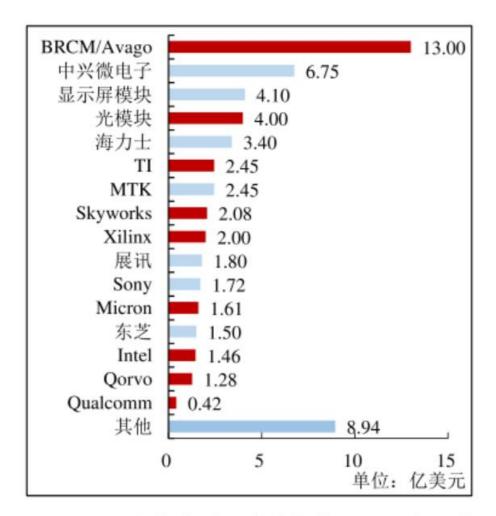
数据通信产品。在路由和交换芯片方面,中兴已实现中低端芯片自主配套,100G等高端交换路由芯片主要来自 Broadcom; 以太网 PHY 和高速接口芯片,仍全部来自 Broadcom、LSI(已被 Broadcom/Avago 收购)、PMC(已被 Microsemi 收购)等公司。


宽带接入产品。XPON 局端和终端芯片、ADSL 局端和终端芯片、CMTS 局端和终端芯片,以及无线路由器芯片,基本全部来自于 Broadcom 公司。

核心网产品。媒体网关、会话控制器、分组网关、分组控制器等产品主要基于 Xilinx 或 Intel/Altera 的高速 FPGA 芯片来实现;用户鉴权授权计费、运维和管理平台等产品基于 X86 服务器来实现。

手机终端产品。高端产品,芯片主要来自高通(包括 BB/AP、WiFi/BT/GPS、RF、电源管理套片),PA 芯片主要来自 Skyworks 和Qorvo;中低端产品,主芯片套片主要来自 MTK、展讯、联芯等公司。

由于中兴 2015 年报尚未披露,根据其 2014 年报及相关数据分析,中兴 2014 年芯片采购额为 59 亿美元,其中从美国采购的芯片



商

表 1 2014年中兴芯片地区采购情况

图 1	2014	年中	兴芯	片及	及模块供质	立
-----	------	----	----	----	-------	---

地区	采购额(亿美元)	占比	
美国	31.08	53%	
中国	8.55	15% 14%	
韩国	8.16		
日本	3.22	5% 4%	
中国台湾地区	2.45		
其他	5.49	9%	
总计	58.95	100%	

数据来源:赛迪智库,2016年3月

华为 联想



图 2 联想 2015 年主要芯片供应商

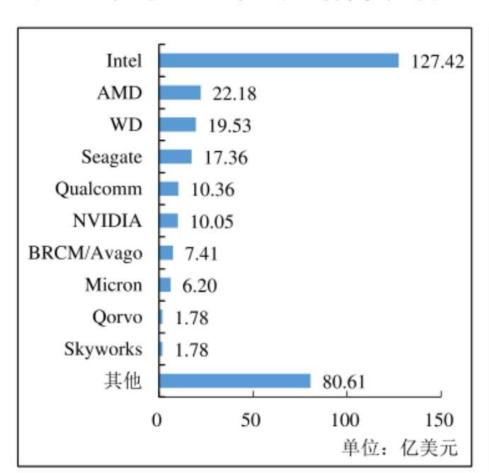
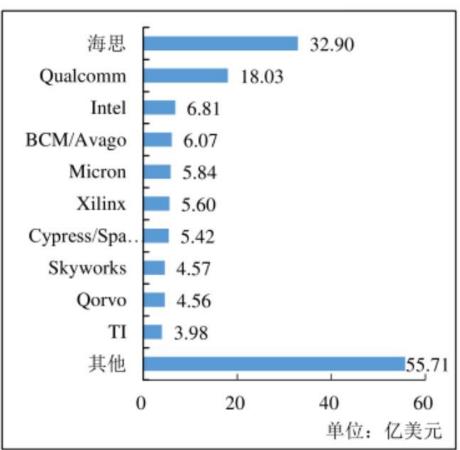



图 3 华为 2015 年主要芯片供应商

数据来源:赛迪智库,2016年3月

国际大国的出口管制

- □2018年11月,美国商务部工业安全署(Department of Commerce, Bureau of Industry and Security, BIS),出台了一份针对关键技术和相关产品的出口管制框架,同时将开始对这些新兴技术的出口管制面向公众征询意见。
- □现在,商务部工业安全署已经发布了关于这项政策制定的先期通知,其中列出了14个政府考虑进行管制的领域,也就是下面这些"具有代表性的技术类别"。

1、生物技术。例如: 8、物流技术,例如: (i)纳米生物学: (i)移动电力系统: (ii)合成生物学; (ii)建模和模拟系统; (iii) 基因组和基因工程: (iii)资产总体可见度; (iv)神经科学。 (iv)基于配送的物流系统(DBLS)。 2、人工智能(AI)和机器学习技术,例如: 9、增材制造(例如3D打印)。 (i)神经网络和深度学习(例如,脑模拟、时间序列预测、分类): **10、机器人** 例如: (ii) 进化和遗传计算(例如遗传算法、遗传编程): (i)微型无人机和微型机器人系统; (iii)强化学习; (ii)集群技术: (iv)计算机视觉(例如,物体识别、图像理解); (iii)自组装机器人; (iv)分子机器人: (v) 专家系统(例如决策支持系统,教学系统); (v)机器人编译器; (vi)语音和音频处理(例如,语音识别和制作); (vi) 智能微尘。 (vii)自然语言处理(例如机器翻译): **11、脑机接口,**例如: (viii)规划(例如,调度、博弈); (ix)音频和视频处理技术(例如,语音克隆、deepfakes); (i)神经控制接口: (ii)意识-机器接口: ✓ (x)AI云技术: (iii)直接神经接口; ✓ (xi)AI芯片组。 (iv)脑-机接口。 3、定位、导航和定时(PNT)技术。 12、高超音速空气动力学。例如: 4、微处理器技术, 例如: (i)飞行控制算法: (i)片上系统(SoC); (ii)推进技术: (ii)片上堆栈存储器。 (iii)热保护系统; 5、先进的计算技术,例如: (iv)专用材料(用于结构、传感器等)。 ✓ (i)以内存为中心的逻辑(Memory-centric logic)。 13、先进材料。例如: 6、数据分析技术。例如: (i)自适应伪装: (i)可视化; (ii)功能性纺织品(例如先进的纤维和织物技术): (ii)自动分析算法: (iii)生物材料。 (iii)语境感知计算。 14、先进的监控技术。例如: 7、量子信息和传感技术. 例如: 面印和声纹技术。 (i)量子计算: (ii)量子加密: (iii)量子传感。

结论

口计算机系统与软硬件设计已经成为各个国家争 夺的科技制高点。

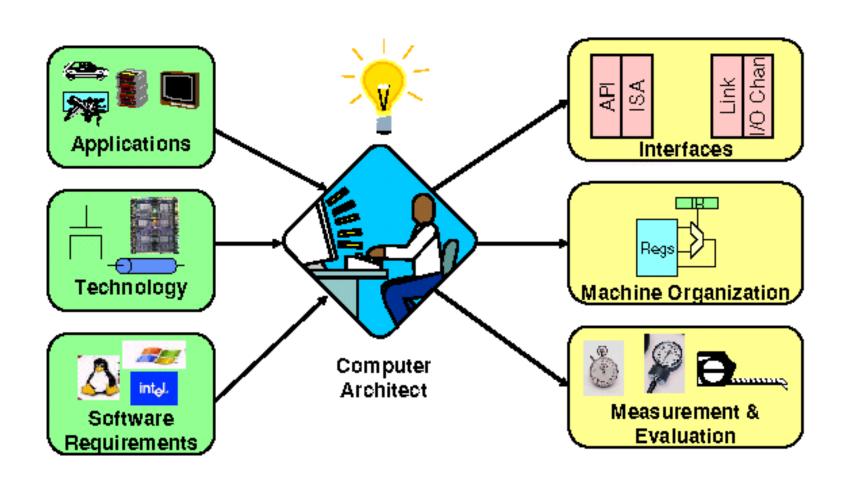
计算机硬件

- 1. 微处理器技术
- 2. 芯片设计与制造技术
- 3. 智能计算机
- 4. 高性能计算机 (超算)
- 5. 量子计算机

计算机软件

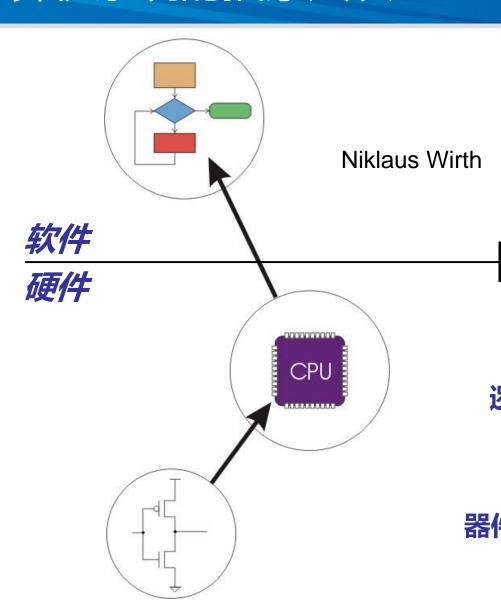
- 1. 生物制造
- 2. 人工智能
- 3. 机器学习
- 4. 航空航天, 兵器装备
- 5. 超算应用

口国内的产业、科研情况与国际先进水平还有较大差距,一定要学,更要学好! ★ ★ 大美郎 大差距,一定要学,更要学好!



如何学习计算机组成原理

计算机系统设计涉及问题



计算机科学永恒的问题:如何设计出更好的计算机,如何利用好现有的计算机?

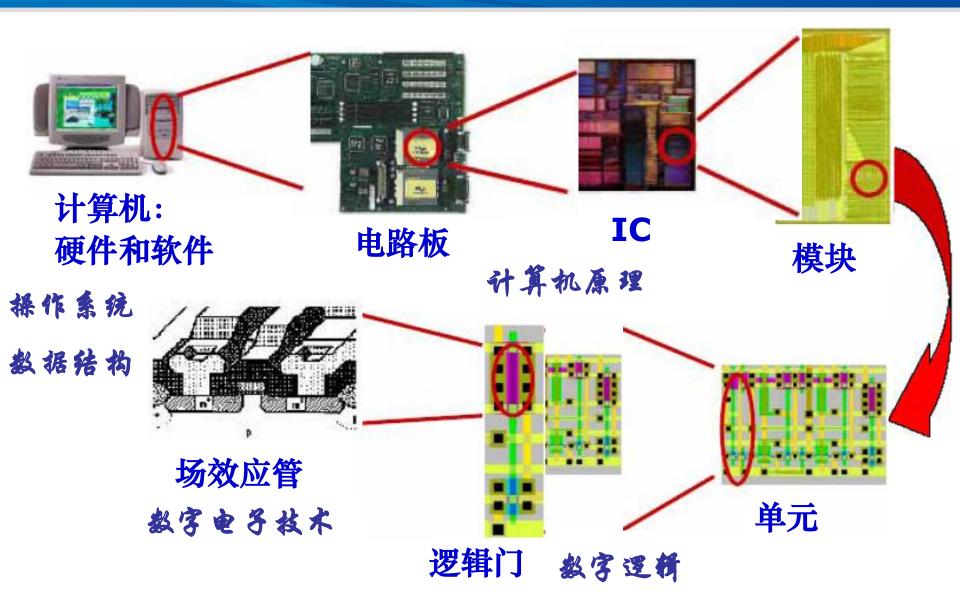
计算机系统的抽象层次

应用问题

程序=算法+数据结构

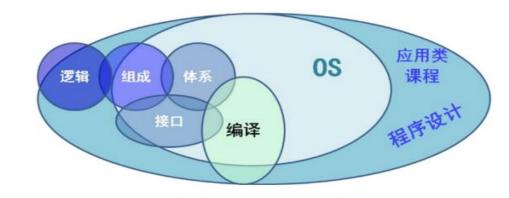
语言


指令集体系结构


微体系结构 逻辑和集成电路设计

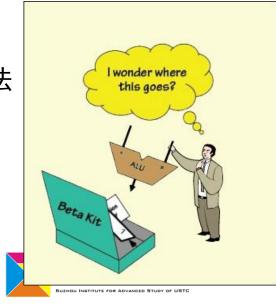
器件(晶体管/集成电路工艺学)

课程准备

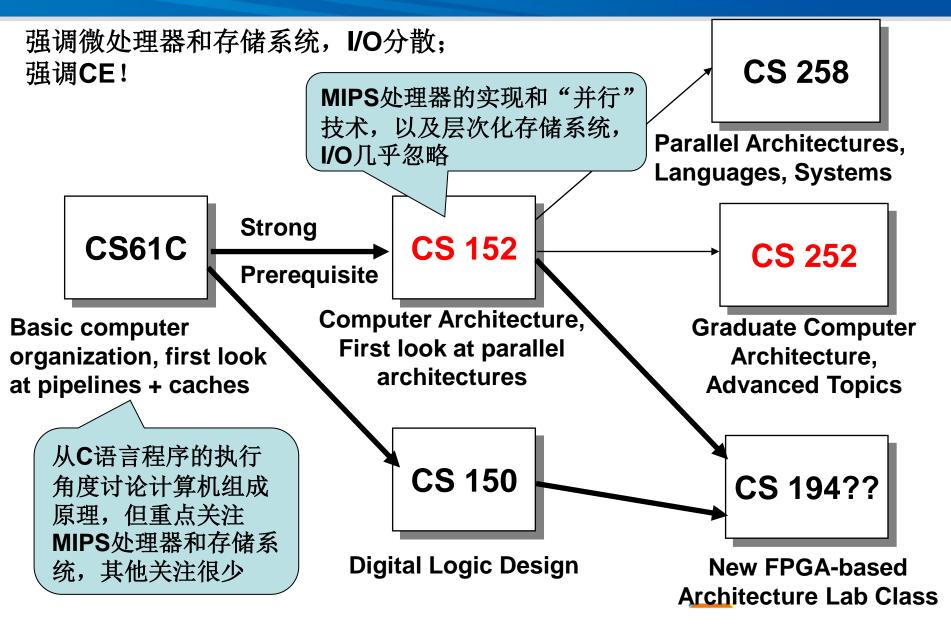


密切相关的课程

- □ 数据结构和算法
- □ 程序设计
 - ✓ C/C++/JAVA/面向对象程序设计
- □ 操作系统
 - ✓ 应用程序划分、进程线程调度、文件系统
- □ 编译原理
 - ✓ 程序从源代码到二进制的处理过程
 - ✓ 编译->汇编->链接
 - ✓ 词法分析->语法分析
- □ 组成原理
 - ✓ CPU内部的处理机制
 - ✓ 指令集、流水线
 - ✓ 五大功能部件、中断、10、存储等
 - ✓ 计算机运算
- □ 组成原理、微机原理、体系结构
 - ✓ 重点单处理器系统、介绍多核、多处理器等并行系统
 - ✓ 强调软硬件接口
- □ 根据自己的实际情况进行针对性的学习。

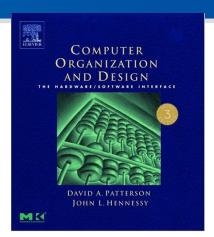


USTC的有关课程



- □ 数电、电子系统设计(VerilogHDL)
- □ 计算机组成原理
 - ✓ 对计算机系统的基本组成结构和工作机制有比较透彻的理解
 - 重点讨论"单处理器"计算机系统(唐本和P&H的MIPS模型CPU)。
 - ✓ 一般不涉及具体机型
- □ 微型计算机原理
 - ✓ 突出应用,详细讲述微处理器编程结构、汇编语言、接口技术和 应用编程方法
- □计算机体系结构
 - ✓ 计算机系统的设计优化技术和性能定量分析方法

UC伯克利的相关课程



CS152 Computer Architecture and Engineering

- 口 教材
 - ✓ Computer Organization and Design: The Hardware/Software Interface, Third Edition by David A. Patterson and John L. Hennessy.
- 口 参考书
 - Computer Architecture: A Quantitative Approach, Third Edition by John L. Hennessy and David A. Patterson.
 - This is a more advanced text, used in CS252. It is available for occasional supplementary reading.
- 口 实验参考书
 - ✓ See MIPS run by Dominic Sweetman, Morgan Kaufman Publishers.
 - Provides an in-depth, easy to use guide to the MIPS instruction set, including special attention to processor control.
 - ✓ MIPS RISC Architecture, Second Edition by Gerry Kane and Joe Heinrich, Prentice Hall.
 - This provides a complete reference on the MIPS instruction set and has very nice treatment of pipelined design.

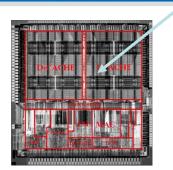
CS152 Computer Architecture and Engineering

□ 教学目标

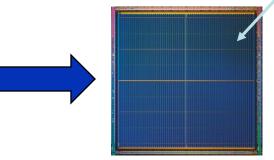
- ✓ 深刻理解现代数字计算机系统的内部工作原理,以及软硬件的设计折衷。
 - 用高级语言(如C或Java)写的程序如何转换成机器语言(机器指令),硬件是如何执行这些指令的?从而理解软件和硬件各自是如何影响程序性能的。
 - 软件和硬件之间的接口是什么? 软件是如何指示硬件执行所需要的功能的? 从而理解如何写好 各种软件。
 - 程序的性能是由什么决定的?程序员应如何改进性能?从而理解源程序,软件的编译和优化, 硬件的高效执行是如何共同决定程序性能的。
 - 硬件设计人员如何改进计算机的性能?进一步的理解需要学习《计算机体系结构:量化分析方法》
- ✓ 引导学生经历一个完整的设计过程,解决工程设计实际面临的问题
 - 理解复杂的硬件系统的设计流程,获得使用CAD工具设计硬件系统,体验在实际硬件上运行所做的设计。
 - 做出实际的硬件,而非模拟。最后的设计实现要在FPGA硬件上运行,通过用汇编语言程序对 MIPS指令集的测试。
- ✓ 讨论现代计算机体系结构的快速变化, 计算机设计未来的发展趋势

CS152 Computer Architecture and Engineering

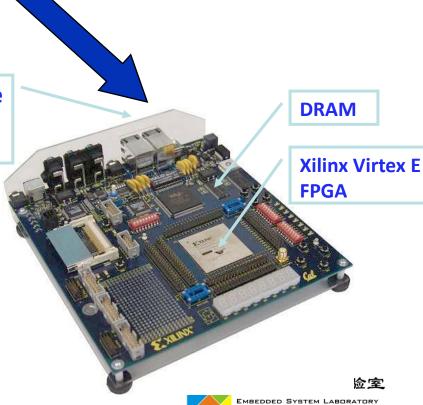
□课程特色


✓强调课程设计:一个学期,每个学生要投入

200小时,占总成绩的50%


- ✓完成基于MIPS指令集的CPU设计,用标准单元实现 ,能在FPGA上运行
- ✓了解现代处理器的设计流程
 - 微体系结构设计: C模拟器设计
 - 逻辑设计和综合: Verilog仿真器设计
 - FPGA功能验证: 通过一系列汇编语言程序对MIPS指令 集的测试

Computer Design Projects


Real hardware

Xilinx Virtex E

- 43,200 "parts" +655,000 RAM bits
- Write Verilog to "wire" parts.

Download CPU machine code using TFTP

学生反馈

- □ 我在这里的第一学期上了一门叫 《计算机系统设计》的本科课程 ,其辛苦程度真实一言难尽。
- □ 十五个星期内交了十次作业,作了六次课程设计。有的设计还分几个部分,分开交设计报告。所以设计报告大概也交了有十次左右。
- □ 最恐怖的是有一次,十天内要交六份作业或设计报告,而且当时正值其他几门课正在期中考试。抱怨是没有用的,老师说: "我很抱歉。但这门课很重要,请大家不停的工作"。
- □ 学生从一般的逻辑时序电路开始设计(数电都已忘得差不多了),核心是自行设计"麻雀虽小五脏俱全"的ALU,单指令周期CPU(single cycle CPU),多周期CPU(Multi-cycle CPU),以直到最后实现流水线(pipe line)32位MIPS CPU和Cache。
- □ 一门课下来,所有与计算机CPU有关的知识全部融会贯通。硬件设计水平也有了很大提高(就是太累)。

UC伯克利的新变化 本科CS152与研究生课程CS252合并

→ C ① 不安全 | inst.eecs.berkeley.edu/~cs152/sp20/

Q 🔥

Computer Science 152/252:
CS152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Spring 2020

of. Krste Asanović

TAs: Albert Ou and Yue Dai

CS152/CS252 Lectures: Monday and Wednesday, 10:30am-12:00am, 306 Soda Hall CS152 Discussion Sections: Friday 12-2pm DIS 101 155 Kroeber / Friday 2-4pm DIS 102 3109 Etcheverry CS252 Reading Discussion: TBD

CS152 Course Info

CS252 Course Info

Resources

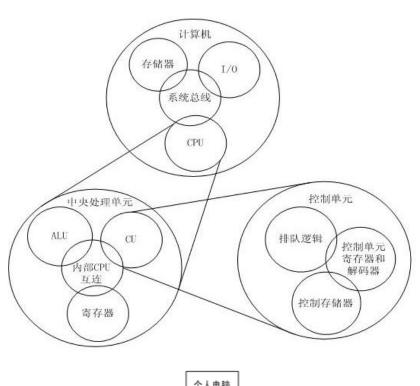
Welcome to the Spring 2020 CS152 and CS252 web page. This semester the undergraduate and graduate computer architecture classes will be sharing lectures, and so the course web page has been combined.

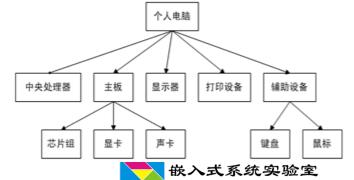
CS152 is intended to provide a foundation for students interested in performance programming, compilers, and operating systems, as well as computer architecture and engineering. Our goal is for you to better understand how software interacts with hardware, and to understand how trends in technology, applications, and economics drive continuing changes in the field. The course will cover the different forms of parallelism found in applications (instruction-level, data-level, pate-level) and how these can be exploited with various architectural features. We will cover pipelining, superscalar, speculative and out-of-order execution, vector machines, VLIW machines, multithreading, graphics processing units, and parallel microprocessors. We will also explore the design of memory systems including caches, virtual memory, and DRAM. An important part of CS152 is series of lab assignments using real microprocessor designs implemented in the Chisel hardware description language, and running as simulators and FPGA emulators hosted in the Amazon cloud (FireSim). These simulators will give you an in-depth look at a variety of processor architectural techniques. Our objective is that you will understand all the major concepts used in modern microprocessors by the end of the semester.

CS252 is intended to provide essential background for students intending to pursue research in computer architecture or related fields, and also provides preparation for the Berkeley EECS computer architecture oral prelim examination. An important part of CS252 is reading and discussion of classic architecture papers, as well as a substantial course project.

Course Calendar with Handouts

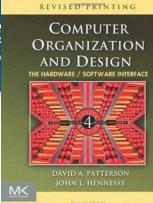
Note: Tentative, schedule subject to change!


We	ek Date	Lecture	Readings 5th Edition	Readings 6th Edition	Assignments / Handouts	
1	Wed Jan 22	L1: Introduction, Early Machines PPTX PDF	Ch. 1, App. A	Ch. 1, App. A		
	Fri Jan 24	CS152 No section				
	Mon Jan 27	L2: Simple Machine Implementations, Microcoding PPTX PDF				
2	Mon Jan 27	CS252 No Readings Discussion				
	Wed Jan 29	L3: Pipelining PPTX PDF	App. C.1-C.3	App. C.1-C.3	PS 1 (<u>PDF</u> , <u>DOC</u>)	
	Fri Jan 31	CS152 Section 1: Microcode, Lab 1 Overview PDF			Lab 1 Worksheet 1 Handout 1 Blank microcode table	
	Mon Feb 3	L4: Pipelining II PPTX PDF	App. C.4-C.6	App. C.4-C.6		
3	Wed Feb 5	L5: Memory Hierarchy PPTX PDF	App. B.1-B.2, Ch. 2.1-2.3	App. B.1-B.2, Ch. 2.1-2.2		
3	Web Feb 5	CS252 Readings Discussion, 380 Soda 1-2pm	"Design of the B5000 System", Lonergan, King, 1961 "Architecture of the IBM System/360", Amdahl, Blaauw, Brooks, 1964			
	Fri Feb 7	CS152 Section 2: Pipelining review PDF			Worksheet 2	
1	1	1	I .			


本课程关注的核心内容

□ 课堂教学

- ✓ 中央处理器(CPU)
 - 数据表示
 - 算术逻辑运算
 - 指令系统
 - 数据通路
 - 控制单元
- ✓ 外围部件结构
 - 系统总线
 - 总线性能、总线结构、总线控制
 - 存储器
 - 主存、高速缓存、辅存
 - 输入输出系统
 - I/0接口、I/0控制方式、外设
- □ 本课程的目的
 - ✓ 深入理解**计算机系统**的**硬件**组成和工作原理
 - 处理器、总线、存储器、I/0系统等
 - ✓ 深入理解处理器的内部结构和工作原理
 - ✓ 了解理解各个功能部件的系统级设计过程


EMBEDDED SYSTEM LABORATORY

教材与参考书

- Computer Organization and Design—The HW/SW I/F
 - ✓ David Patterson and John Hennessy, 4th Ed, 09, COD
 - "Design an ISA that is appropriate for a given application, taking into consideration key computer organization design principles"
 - CPU和Cache强, MEM和I/O弱
 - 强调性能分析:一些学校用作Computer architecture教材
- "Computer organization and architecture: Designing for performance" (COA)
 - ✓ Dr. William Stallings(Independent Consultant)
 - 1996第4版
 - 2005第7版
 - 2010第8版(电子版), 2012第9版(电子版), 2015第10版
 - ✓ 8th前偏organization,后偏architecture
 - CPU和Cache弱, MEM和I/O强
- □ 《计算机组成原理》, 2nd, 唐朔飞, 2008
 - ✓ 参考William Stallings 7th和P&H 3rd
 - 以William Stallings 4th为框架,无OS、VM、并行处理等内容
 - CPU和Cache弱, MEM 和I/O强

COD: Patterson and Hennessy

- lacktriangle "COD: The Hardware/ Software Interface"
 - ✓ 1st Edition, 1994
 - \checkmark 2nd Edition, 1997
 - ✓ 3rd Edition, 2004, 郑纬民译
 - Covers the revolutionary change from sequential to parallel computing
 - ✓ 4th Edition, 2009。2011康继昌译
 - the switch from uniprocessor to multicore microprocessors
 - make parallelism a first class citizen(spread parallelism throughout all the chapters)
 - ✓ 5th Edition, 2013 2016出ARM版
 - moves forward into the post-PC era with new examples, exercises, and material highlighting the emergence of mobile computing and the cloud.

 This generational change is emphasized and explored with updated content featuring tablet computers, cloud infrastructure, and the

Patterson & Hennessey

□2018年 ACM图灵奖

- ✓ "软件系统性能取决于软件设计者对系统硬件的理解程度。操作系统设计者、更多的软件工程师需要有较强的计算机组织与设计的背景知识"
- University of California at Berkeley in 1977
- Design and implementation of RISC I, first VLSI RISC Computer, foundation of the SPARC architecture, used by Sun
- leader of Redundant Arrays of Inexpensive Disks project (or RAID)
- Chair of the CS division at Berkeley

RISC-V

计算机体系结构的又一个黄金时代: 特定领域的软硬件协同设计,增强安全,开源指令集和芯片的敏捷开发

2000-2016 Stanford 大学校长 2018- Alphabet 公司董事长

Turing Lecture

A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, and Agile Chip Development

John L. Hennessy and David A. Patterson

Turing Lecture

表白可能巨亏,分手一定血赚!

科技 > 演讲·公开课 2019-03-19 09:26:08

2202播放 4弹幕

A New Golden Age for Computer Architecture: History, Challenges, and Opportunities

David Patterson
UC Berkeley and Google

December 5, 2018

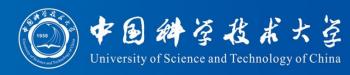
Full Turing Lecture:

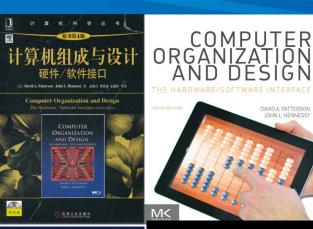
https://www.acm.org/hennessy-patterson-turing-lecture

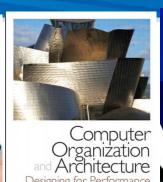
I like to thank you all for getting up

请先 登录 武

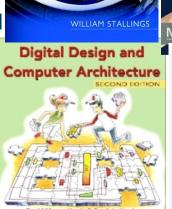
苗草礼心ゝ

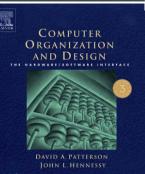

学学

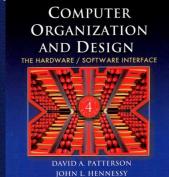

https://www.bilibili.com/video/av46710093/



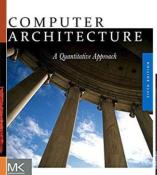
嵌入式系统实验室

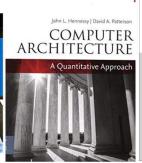

计算机组成原理-体系结构系列参考书

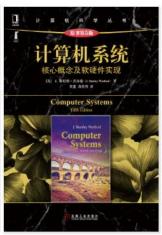




William Stallings

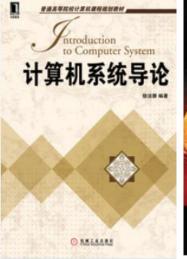


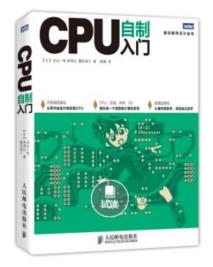


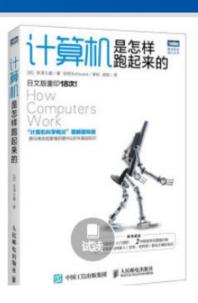


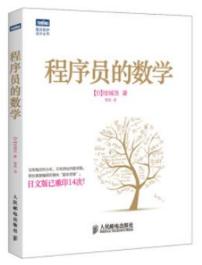


计算机系统参考书



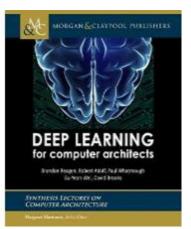


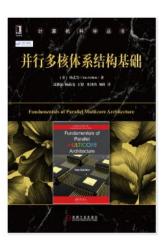

课外书

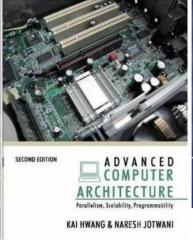









前沿-面向研究生的参考书



Synthesis Lectures on Computer Architecture, https://www.morganclaypool.com/toc/cac/1/1

Computer Science 152/252: CS152 Computer Architecture and Engineering CS252 Graduate Computer Architecture http://www-inst.eecs.berkeley.edu/~cs152/sp19/

主要涵盖内容:

- COD3, 4, 5: 强调RISC, 兼顾CISC
- 1. 计算机指令
- 2. 计算机的算术运算
- 3. 处理器
 - 单周期、多周期(4/5无)、流水线
 - **异常**
 - COD3有微程序, COD4/5无
- 4. 层次结构的存储器
 - Cache、虚存、内存
 - COD4有Cache控制器, 3/5无
- 5. 外存和I/O
 - 磁盘、总线、I/O
 - 内容少:概念化,不清晰
- 6. 并行
 - 多处理器、多核和集群

- ・ 唐: 以CISC为主
 - ✓ 单处理器
 - 多周期,微程序
 - ✓流水线
 - · 仅介绍了概念,没有讨 论实现
 - √ 无虚存
 - ✓强调系统的完整性
 - ・总线
 - ・内存
 - I/O

Course Schedule

Lecture	Topic	Read BEFORE class	Keypoint
1	概论	CHP1	基于COD4
2	指令系统	CHP2,唐第七章	
3	MIPS-RISCV处理器(单周期、多周期)	CHP4	
4	MIPS-RISCV处理器(流水线)	CHP4	
5	异常与中断	CHP4	
6	Cache	CHP5	
7	SRAM, DRAM	CHP6,唐第四章	COA9第五章
8	ROM, SDRAM	唐第四章	
9	外存	CHP6,唐第四章	
10	虚存	CH5	
11	存储器的可靠性	CH6,唐第四章	
12	总线	CH6, 唐第三章	
13	1/0	CH6, 唐第五章	

• 不强调并行,不强调性能优化设计!

Course Schedule

Lec	Topic	Read BEFORE class		Keypoint
	151	COD5	唐	20.00
1	概论	CHP1	P-1	0
	逻辑设计基础	附录A		
2	指令系统,汇编程序设计	CHP2	% 6	冒泡排序
	RISC 概 述	附录D	12	10
3	RISC 处理器(单周期、多周期)	4.4		多周期 COD3
	控制器实现(组合逻辑,微程序)	附录 C		
	RISC 处理器 (流水线)	4.5、		
	流水线冒险	4.6 . 4.7 . 4.8		
	多发射与 HMT	4.10 6.4		
	异常与中断	4.9	8.4	3
6	SRAM, DRAM, ROM, SDRAM	5.2 A.9	第四章	10
	Cache 原理	5.3 . 5.4	4.3	
	Cache Controllers	5.9		
	外存	5.2	第四章	
	虚存	5.7	200	
	存储器的可靠性	5.5 A.9	第四章	
7	总 线		第三章	
8	1/0		第五章	TinyComputer
9	A 模型 CPU 设计(多周期,微程序)		第八/九/十	3
10	算术运算	CHP3	唐第六章	
11	专题:并行,非冯机,低功耗	CHP1 CHP6		

• 不强调并行,不强调性能优化设计!

课程成绩考核

□课堂教学: 70%

✓期末考试: 65% (闭卷)

✓作业: 30%,

• 不能抄袭!

• 不能补交!

✓课堂练习:5%

□实验课: 30%

联系方式

口 课程主页:

2021: https://enszhou.github.io/cod/

2020: http://home.ustc.edu.cn/~leedsong/

QQ群: 486313994

口 主讲

王超: cswang@ustc.edu.cn

□ 助教:

蔡豪语 caihaoyu@mail.ustc.edu.cn

高迎雪 gyingxue@mail.ustc.edu.cn

周恩帅 zes18119713525@mail.ustc.edu.cn

王晶 wj980828@mail.ustc.edu.cn

高海涵 kd193104@mail.ustc.edu.cn

黄致远 hzy_ustc@mail.ustc.edu.cn

口 上课时间地点

1~15W 3C103:周一 (6,7)

1~15W 3C103:周三 (6,7)

口 实验: 张俊霞老师,时间地点待定

实验课: 2019要求

- □ 设计实现设计实现一个简单但完整的计算机MIPS32指令集CPU子集
 - ✓ 共40条指令
 - ✓ 单周期/多周期实现(必做)
 - ✓ 流水线实现(选作)
- □ Xilinx ISE (Vivado) Vivado 2016.2, Verilog HDL, Nexsy4-DDR 实验板
 - ✓ Verilog HDL设计描述
 - ✓ 逻辑仿真
 - ✓ FPGA平台验证 Digilent Nexys3 FPGA: Spartan-6 FPGA
- □ 实验内容安排
 - ✓ 运算器与寄存器(1周)
 - ✓ 数据通路与状态机(1周)
 - ✓ 寄存器堆与计数器(1周)
 - ✓ 存储器与显示控制器 (2周)
 - ✓ 多周期CPU设计(2周)
 - ✓ 综合设计 (3周)

实验课: 2020要求

- 口设计并实现一个真实的(非虚拟或仿真的)虽简 单但较为完整的计算机硬件系统
- 口实验工具: Vivado 2016.2, Verilog HDL, Nexsy4-DDR实验板
- >实验一运算器与排序 (1周)
- > 实验二 寄存器堆与队列 (1周)
- > 实验三 单周期CPU (1周)
- ➤ 实验四 多周期CPU (2周)
- ➤ 实验五 流水线CPU (3周)
- >实验六 综合设计 (2周)

【组成原理实验通知】

- 1. 实验时间:第4周至第14周,每周提供两个时间段(周二和周四晚上18:30~21:30),同学可任选一个时间段;
- 2. 实验QQ群: 2021组成原理实验 (1039193953);
- 3. 选课提醒:对于没有Verilog HDL和EDA设计基础的同学,要顺利完成实验并通过理论课程是有一定困难的,因此选择组成原理课程需要谨慎!
- 4. 本学期除开设普通实验班外,拟选拔一部分优秀同学进入面向FPGA设计的竞赛班,有意参加的同学尽快与张老师联系(QQ: 2763382562, 手机: 13866102077)。

课程目标(本科生应达到的要求) CS152 Computer Architecture and Engineering

□教学目标

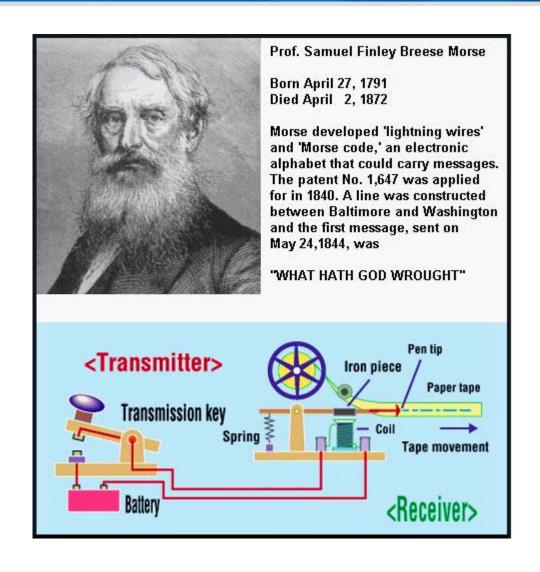
- ✓ 深刻理解现代数字计算机系统的内部工作原理,以及软硬件的设计折衷。
 - 用高级语言(如C或Java)写的程序如何转换成机器语言(机器指令),硬件是如何执行这些指令的?从而理解软件和硬件各自是如何影响程序性能的。
 - 软件和硬件之间的接口是什么?软件是如何指示硬件执行所需要的功能的?从而理解如何写好各种软件。
 - 程序的性能是由什么决定的?程序员应如何改进性能?从而理解源程序,软件的编译和优化, 硬件的高效执行是如何共同决定程序性能的。
 - **硬件设计人员如何改进计算机的性能**?进一步的理解需要学习《计算机体系结构:量化分析方法》
- ✓ 引导学生经历一个完整的设计过程,解决工程设计实际面临的问题
 - 理解复杂的硬件系统的设计流程,获得使用CAD工具设计硬件系统,体验在实际硬件上运行所做的设计。
 - 做出实际的硬件,而非模拟。最后的设计实现要在FPGA硬件上运行,通过用汇编语言程序对 MIPS指令集的测试。
- ✓ 讨论现代计算机体系结构的快速变化, 计算机设计未来的发展趋势

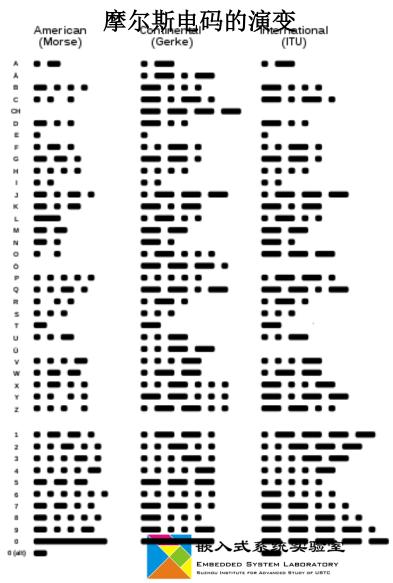
课外知识

- □信息与编码
 - ✓常见的编码格式
- □编码是最原始的程序设计语言,出现要远远早于计算机和程序
- □常见的编码形式
 - ✓莫尔斯码电报
 - ✓ ASCII, Unicode, UTF-8, GB2312
 - ✓ 拼音、五笔输入法
 - ✓二进制编码
 - ✓ 条形码与二维码
 - ✓量子编码
 - ✓DNA编码

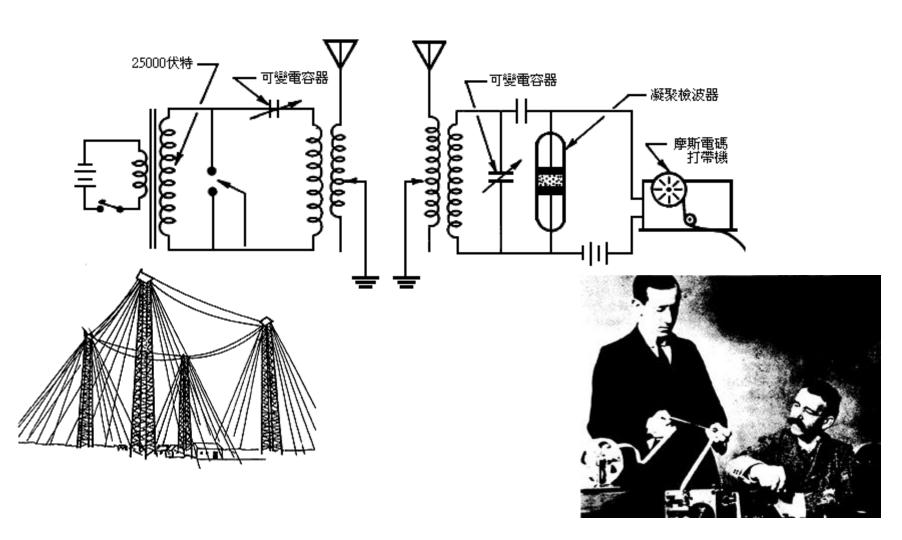
编码: 隐匿在计算机 软硬件背后的语言






摩尔斯编码

摩尔斯发明的有线电报



马可尼的无线电报机

摩尔斯电码的优势

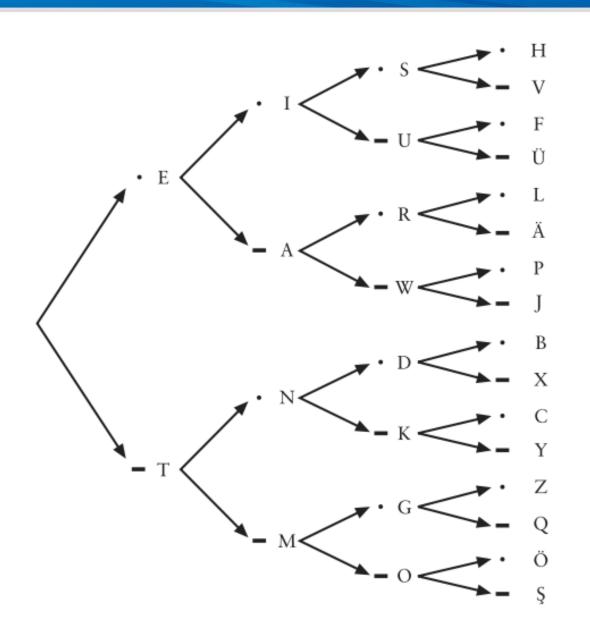
- □可以由任何能够产生可控长短脉冲的装置发送 ,解码不需要使用专门设备
- □占用带宽窄──适合小功率通信

A · –	J	s		[.]	[:]
$B - \cdots$	K -·-	T -	2	[,]	[:] - · - · - ·
C - · - ·	$ L \cdot - \cdots$	$ \mathbf{U} \cdots -$	3	[?]	[=] - · · · -
$D - \cdots$	$ \mathbf{M} $	$ \mathbf{v} \cdots -$	$ 4 \cdots -$	[1]	[+]
E	$ \mathbf{N} $ – ·	$ \mathbf{w} \cdot$	5	[!]	[-] - · · · · –
$\mathbf{F} \cdots = \mathbf{r}$	0	$ x - \cdots -$	6 - · · ·	[/] - · · - ·	[]
G ·	$ P \cdot \cdot$	Y	7	[0]	["]
H	$Q - \cdot -$	$ z - \cdots$	8	D] - · · -	[\$]
I ···	$ R \cdot - \cdot$	0	9	[&]	[@]··-· 公式系统实验室

摩尔斯电码

•	E	
_	T	

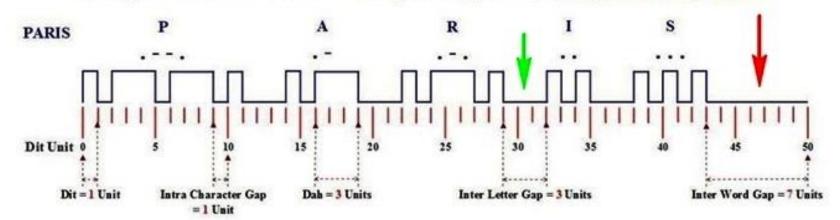
••	I	 N	
	A	 M	


•••	S	 D
	U	 K
	R	 G
•	W	 O

••••	Н	-	В
	V		X
	F		С
	Ü		Y
	L		Z
	Ä		Q
	P		Ö
•	J		Ş

摩尔斯电码-二叉树

点划数	码字数
1	$2^1 = 2$
2	$2^2 = 4$
3	$2^3 = 8$
4	$2^4 = 16$
5	$2^5 = 32$
6	$2^6 = 64$
7	$2^7 = 128$
8	$2^8 = 256$
9	$2^9 = 512$
10	$2^{10} = 1024$



摩尔斯电码的时间控制

- □点"嘀"长度为1个单位,划"哒"长度为3个单位
- □同一字母中点划间隔为1个单位
- □同一词中字母间隔为3个单位

Timing of "Standard" Word - Compiled Graphically by Raymond Lee, VR2UW

Q简语-宏定义

QRA	你台的名称是什么?	QRV	你准备好了吗?
QRP	要我降低发信机功率吗?	QTH	你的地理位置在?
QRS	要我发得慢一些吗?	QSB	我的信号有衰落吗?
QRT	要我停止拍发吗?	QSL	你能确认联络吗?
QRU	你有什么发给我吗?	QRZ	谁在叫我?
QRM	你受到他台干扰吗?	QSA	我的信号强度怎样?
QRN	你受到天电干扰吗?	QSY	要我改用别的频率拍发吗?

通信用缩语

- □称呼: U(你) / UR(你的) / OM(老朋友) / YL(女士)
- □问候: GM(早上好) / GA(下午好) / GE(晚上好)
- □状况: RST(信号报告) / RIG(设备) / ANT(天线) / PWR(功率) / WX(天气) / OP(操作员)
- □其它: DE(这里是) / R(收到) / K(发送结束) / TNX(Thanks) / TU(Thank you) / CLG(呼叫) / VY(非常) / PSE(请) / NW(现在) / SOS(紧急呼救) / 73(Best regards) / 88(Love and kisses)

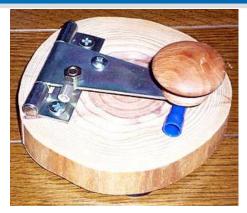
发送摩尔斯电码的工具一电键

口手键

美式(平头)键簧较软 苏式(圆头)键簧较硬

- 口半自动键
- 口自动键

单桨自动键(扫拨键)双桨自动键

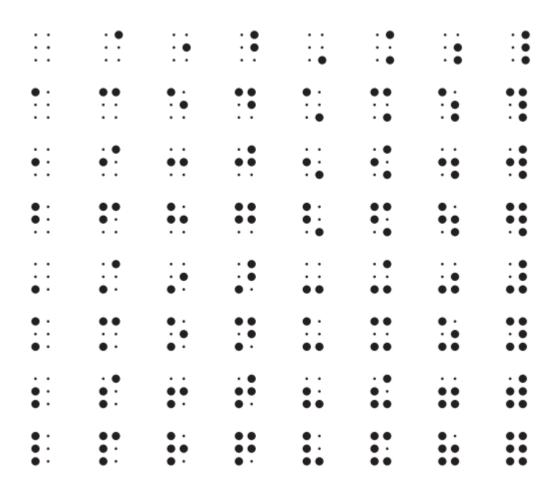


特别的手键

布莱叶盲文编码

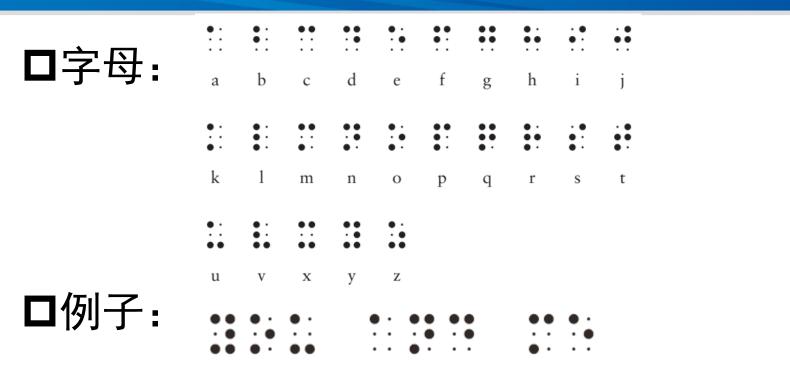
布莱叶编码的历史

- □路易斯·布莱叶1809年出生于法国, 1852去世
- □Valentin Haüy(1745—1822), 巴黎学校的创始人,发明了一种将字母凸印以供触摸阅读的方法。
- □法国陆军上尉Charles Barbier在1819 年发明了一种夜间文字的书写体系,使 用厚纸板上有规律凸起的点划来供士兵 们在夜间无声地传递口信。
- □布莱叶在上述原理基础上进行改进, 1823年创建了布莱叶编码系统



布莱叶编码的编码格式

□共64种编码格式(Why 64?)



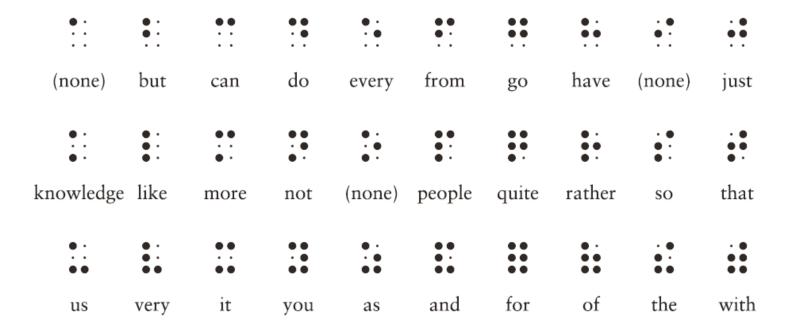
• 数字、字母和 标点符号—都 被编码成局限 在2×3小格中 一个或多个的点。

字母和数字的表示方法

□数字:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 0

□例子:


		カロ長	、第五县人	民中盲文值	1 段小儿	96	
	1元	2元	5 元	10元	20 元	50 元	100元
第四套	•	:	٠.	• .:		٠:	• :
第五套			٠.		: 4	٠. ١	. 77

布莱叶编码扩展(宏定义)

□二级布莱叶编码

条形码与二维码

条形码和二维码

□条形码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。

PDF417码

QR码

条形码的解码

比特	意义	左边的编码	
101	最左边的护线	0001101=0	0110001=5
0001101		0011001=1	0101111=6
0011001	左边的数字	0010011=2	0111011=7
0001101		0111101=3	0110111=8
0001101		0100011=4	0001011=9
01010	中间的护线		
1110010		右边的编码	
1100110		1110010=0	1001110=5
1101100 1001110	右边的数字	1100110=1	1010000=6
1100110		1101100=2	1000100=7
1000100		1000010=3	1001000=8
101	最右边的护线	1011100=4	1110100=9

51000 01251 7

条形码的解码

- □第一个数字(在这里是 0)被称为数字系统字符 , 0的意思是说这是一个规范的条形码。如果是 具有不同重量的货物(像肉类或其他商品),这 个数字是 2; 订单、票券的 U P C 编码的第一个 数字通常是 5。
- □紧接着的 5个数字是制造商代码。再后面的 5个数字(01251)是该公司的某种产品的编号
- □最后的数字(这里是 7)称作模校验字符,这个字符可用来进行另外一种错误检验。

嵌入式系统实员 EMBEDDED SYSTEM LABORA

条形码校验

□ 为了解释校验字符是怎样工作的,将前 11个数字(是 0 51000 01251)各用一个字母来代替:

A BCDEF GHIJK

□ 然后, 计算下式的值:

$$3 \times (A + C + E + G + I + K) + (B + D + F + H + J)$$

 $3 \times (0 + 1 + 0 + 0 + 2 + 1) + (5 + 0 + 0 + 1 + 5) = 3 \times 4 + 11 = 2 3$

从紧挨它并大于等于它的一个10的整倍数中减去它,其结果称为模校验字符。紧挨23并大于等于 23的一个10的整倍数是 30,故:

$$30 - 23 = 7$$

□ 这就是印在外包装上并以 UPC (Universal Product Code) 形式编码的模校验字符,这是一种冗余措施。如果扫描仪计算出来的模校验结果和 UPC中编码中的校验字不一致,计算机就不能将这个 UPC作为一个有效值接收。

二进制与逻辑门


需要复习的背景知识

- □二进制、八进制、十进制、十六进制的转换
- □与、或、非、同或、异或、或非、与非
- □全加器、半加器、反向器
- □锁存器、触发器
- □原码、反码、补码

常用逻辑单元

□门电路:与非、或非、非

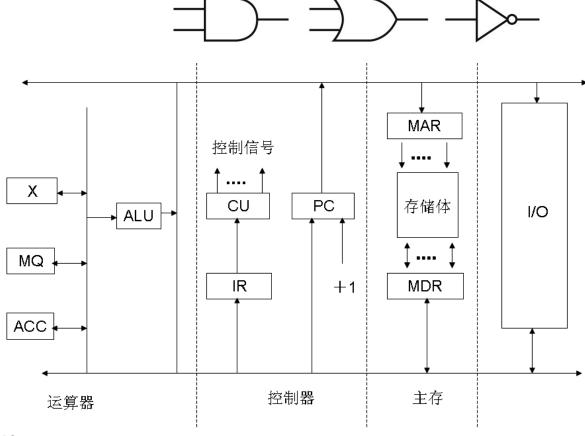
□锁存器Latch

■触发器FF

□多路选择器MUX

□寄存器Reg

□移位寄存器SR


□译码器Decoder

□计数器Counter

■累加器ACC

□加法器Adder

□比较器Comparator

扩充的 2的各次幂的表

□不同进制之间的转换

2的幂	十进制数	八进制数	四进制数	二进制数
20	1	1	1	1
21	2	2	2	10
2 ²	4	4	10	100
23	8	10	20	1000
24	16	20	100	10000
25	32	40	200	100000
26	64	100	1000	1000000
2^7	128	200	2000	10000000
28	256	400	10000	100000000
29	512	1000	20000	100000000
210	1024	2000	100000	1000000000
211	2048	4000	200000	10000000000
212	4096	10000	1000000	1000000000000

图灵机(Turing Machine, 1936)

- □电子计算机的设计思想
- □结构
 - ✓ 一条两端可以无限延伸的纸带(其上有无穷多小格)
 - ✓一个读写头(符号包括0、1)
 - ✓一个控制器(执行控制读写头工作的命令)
 - 五元组: (状态、读符号)→(写符号、移动、状态)
 - 状态集: 含一个开始状态, 一个结束状态
 - ✓ 六个操作:读、写、左、右、改变状态、停止
 - "基本操作 (primitives) 是读写纸带"

当进入结束状态时,停机(H),纸带上的内容为输出结果

思考与复习

- 复习二进制、八进制、十进制、十六进制 之间的互相转换
- 2. 复习逻辑门和移位等操作的物理结构与操作原理
- 3. 了解CPU制作过程(AMD视频)
- 4. 图灵奖报告(视频)

联系方式

Acknowledgements:

This slides contains materials from following lectures:

- Computer Architecture (NUDT)
- CS 152 CS 252 (UC Berkeley)

Research Area:

- ▶ 基于分布式系统, GPU,FPGA的神经网络、图计算加速
- 人工智能和深度学习(寒武纪)芯片及智能计算机

Contact:

- 中国科学技术大学计算机学院
- ▶ 嵌入式系统实验室(西活北一楼)
- 高效能智能计算实验室 (中科大苏州研究院)

cswang@ustc.edu.cn

http://staff.ustc.edu.cn/~cswang

